

KS4 Curriculum Map – Chemistry:

Торіс	Knowledge	Skills	Assessment
	Substantive knowledge: This is the specific, factual	<i>Disciplinary knowledge</i> : This is the action taken	Opportunities
	content for the topic, which should be connected	within a particular topic in order to gain	What assessments will be used to
	into a careful sequence of learning.	substantive knowledge.	measure student progress?
Atomic Structure and the Periodic Table	 Atoms formula and equation. Mixture and separation techniques (filtration, crystallisation, distillation, chromatography). History of atomic models. Plum pudding model, Rutherford nuclear model (gold foil experiment) and Bohr model Size of atoms. Mass, charge + location of subatomic particles. Definitions of mass number and atomic number, isotopes. Electron structure. Developing the Periodic Table. Groups and Periods and electronic structure. Metals and non-metals. Group 1. Group 7. Reactivity trends. Transition Metals. 	 Apply knowledge of physical properties to determine the most appropriate separation method of a mixture. Describe method of separation of mixtures and apparatus used. Apply knowledge of experimental work to explain the idea that models change over time. Compare and contrast key ideas of Plum Pudding and Nuclear model. Compare relative sizes of nucleus and atom Use the periodic table to determine the number of different subatomic particles and the position of electrons. Calculations of RAM. Research different scientists to enforce the idea that theories change over time and based on experimental observations. Use Mendeleev's table to make predictions Explain that reactivity is linked to distance, shielding and nuclear charge. Compare physical and chemical properties of metals and non-metals. Recall the names of elements of Group 0,1 and 7. 	 Collins Connect Quizzes with mid- topic feedback. Atomic Structure and the Periodic Table topic test linked with ARE.

		 Describe and explain the physical properties reactivity of Group 0 elements. Describe the physical properties and reactivity of Group 1 metals. Describe the trend in reactivity of Group 1 elements. Writing balanced equations for Group 1 metals and water. Describe and explain the physical properties reactivity of Group 7 elements. Describe the trend in reactivity of Group 7 elements through displacement reactions. Predict reactions of Group 7 group using displacement reactions. Explain the trends in reactivity of Group 1 and 7 elements in terms of number of shells, distance from the nucleus, shielding and attraction of electrons to the nucleus. Describe the properties of Transition Metals 	
Chemical Changes	 Reaction between metals and oxygen to form metal oxides. The Reactivity Series. Describing the reactions of metals with water and acid. Displacement Reactions. Extraction of metals. Oxidation and reduction in terms of electrons. Metals and acids. Neutralisation and salt production. Soluble salts. pH and neutralization. Strong and weak acids. 	 Describing the reactions of metal with oxygen water and acid. Explain the Reactivity Series in terms of ease of forming ions in reactions Discuss the link between reactivity and product formed. Define oxidation and reduction. Use knowledge of reactivity to determine the most appropriate method of metal extraction. Writing word and symbol equations. Write half-equations and ionic equation for displacement and redox reactions. Evaluate of data to draw conclusions. Define acid, base, alkali, neutralization. Describe the outcome of reaction between acid and metal, acid and metal oxide, metal hydroxide and metal carbonate. Predicting names of salts. 	 Collins Connect Quizzes with mid- topic feedback. Chemical Changes topic test linked with ARE. Required practical.

		 Describe a method for the production of a pure, dry sample of a salt. Recognise pH values for strongly acidic, weakly acidic, weakly alkaline and strongly alkaline solutions and their colour with Universal Indicator. Write equations to show dissociation of strong and weak acids. Explain that strong and concentrated have different meanings. Calculate pH given hydrogen ion concentration. 	
Energy changes	 Exothermic and endothermic reactions and their uses. Energy level diagrams and reaction profiles. Use of calorimeter to measure enthalpy change. Bond enthalpy. Chemical cells and batteries. Fuel cells. 	 Define endothermic and exothermic and activation energy. Draw reaction profiles including activation energy and showing the role of a catalyst. Calculate enthalpy change using the knowledge that bond breaking and making is endothermic / exothermic. Explain whether a reaction is exothermic or endothermic overall in terms of bond breaking and bond making. Interpret voltage data for the relative reactivity of different metals. Evaluate the use of cells. Describe how a fuel cells works. Explain how a fuel cell produces electricity from electrode reactions. Writing half-equations for electrode processes. Evaluate the use of a fuel cell compared to rechargeable cells and batteries. 	 Collins Connect Quizzes with mid- topic feedback. Energy Changes topic test linked with ARE. Required practical
Structure, Bonding and the properties of matter	 Chemical bonds Ionic bonding Covalent bonding Metallic Bonding The Three States of Matter and the Particle Model. 	 Explain chemical bonding in terms of electrostatic forces and the transfer or sharing of electrons. Draw dot and cross diagrams for ionic compounds formed by metals in Groups 1 and 2 with non-metals in Groups 6 and 7. 	 Collins Connect Quizzes with mid- topic feedback Structure, Bonding and the Properties of Matter topic test linked with ARE.

 Properties of ionic compounds Properties of small molecules. Polymer structures. Giant covalent structures. Properties of metals and alloys. Diamond, graphite, graphene and fullerenes. Nanoparticles 	 Determine the charge on the ions of metals and non-metals from the group number. Deduce that a compound is ionic from a diagram of its structure in one of the specified forms. Write formula of named ionic compounds. Describe the limitations of using dot and cross, ball and stick, two and three-dimensional diagrams to represent a giant ionic structure. Work out the empirical formula of an ionic compound from a given model or diagram that shows the ions in the structure. Draw dot and cross diagrams for the simple covalent molecules of hydrogen, chlorine, oxygen, nitrogen, hydrogen chloride, water, ammonia and methane. Represent the covalent bonds in small molecules, in the repeating units of polymers and in part of giant covalent structures, using a line to represent a single bond. Describe the limitations of using dot and cross, ball and stick, two and three-dimensional diagrams to represent molecules or giant structures. Deduce the molecular formula of a substance from a given model or diagram in these forms showing the atoms and bonds in the molecule. Describe the structure and bonding in metals. Predict the states of substances at different temperatures given appropriate data. Explain the different temperatures at which changes of state occur in terms of energy transfers and types of bonding. Recognise that atoms themselves do not have the bulk properties of materials. 	

	 Explain the limitations of the particle theory in relation to changes of state when particles are represented by solid inelastic spheres which have no forces between them. Use appropriate state symbols in chemical equations for chemical reactions. Describe and explain the melting points and conductivity of ionic compounds. Explain why substances that consist of small molecules are usually gases or liquids that have relatively low melting points and boiling points. Explain why small molecules are insulators. Describe the structure of polymers and explain their physical properties. Recognise polymers from diagrams showing their bonding and structure. Describe and explain the properties of giant covalent structures. Recognise giant covalent structures from diagrams showing their bonding and structure. Describe and explain the physical properties of pure metals and alloys. Compare and explain the electrical and thermal conducting ability of pure metals and alloys. Students should be able to explain the properties of diamond in terms of its structure and bonding. Students should be able to explain the properties of graphite in terms of its structure and bonding. Students should be able to explain the properties of graphene in terms of its structure and bonding.
--	---

		 Recognise graphene and fullerenes from diagrams and descriptions of their bonding and structure. Give examples of the uses of fullerenes, including carbon nanotubes. Compare 'nano' dimensions to typical dimensions of atoms and molecules. Evaluate the use of nanoparticles for a specified purpose Explain that there are possible risks associated with the use of nanoparticles. Compounds behave differently to their constituent elements Calculate surface area: volume ratios 	
Chemical Changes (Part 2)	 Extraction of metals. The process of electrolysis. Electrolytes. Electrolysis of molten ionic compounds. Extraction of aluminium by electrolysis. Electrolysis (aqueous solutions). Titrations. 	 Use knowledge of reactivity to determine and evaluate the most appropriate method of metal extraction. Define electrolysis, electrolyte, cathode, anode, cation, anion, discharging Use of PANIC to help students remember which electrode is which. Use of OILRIG to remember oxidation and reduction in terms of electrons. Write half equations for reactions at electrodes. Discuss and explain the steps in the extraction of aluminium electrolysis. Discuss the link between reactivity and product formed. Apply rules for anode and cathode to predict products formed. Use knowledge of reactivity to determine the most appropriate method of metal extraction Evaluate of data to draw conclusions Method of a titration to find reacting volumes of neutralization. Calculating unknown concentrations 	 Collins Connect Quizzes with mid- topic feedback. Chemical Changes (Part 2) topic test with ARE. Electrolysis required practical Titration required practical

Chemical Quantities and calculations	 Conservation of mass and chemical reactions Relative formula mass. Mass changes when gases are in reactions Chemical Measurements and uncertainty. Moles. Amount if substances in equations. Using moles to balance equations. Concentration of solutions. Percentage yield. Atom economy. Using concentration of solutions. Amount of substance in volumes of gases. 	 Calculate relative formula mass. Use the law of conservation of mass to balance equations Use range and mean of results to calculate percentage uncertainty in a result. Correctly use standard form and significant figures in chemical calculations Manipulate data in order to draw valid conclusions. Calculate number of moles in a given mass of a substance. Calculate the mass of one reactant required to react with a given mass of another reactant. Determine the limiting reactant in a reaction and explain why it is limiting. Using moles to write balanced equations. Calculate percentage yield of a product. Compare the Environmental / economic implications of reactions using atom economy calculations. Calculate the number of moles of a substance in a solution. Calculate the number of moles of a substance in a solution. 	 Collins Connect Quizzes with mid- topic feedback Chemical Quantities and calculations topic test linked with ARE.
The rate and extent of chemical change	 Practical methods for studying rate of Reaction. Calculating rates. Units of rate. Factors that can affect rate – concentration, pressure, surface area, temperature and catalyst. Reversible reactions. Dynamic equilibrium. 	 Define rate of reaction Calculate mean rate from data tables or graphical analysis. Calculate the rate of reaction at a specific point in time from the gradient of a tangent. Draw graphs and use them to draw conclusions. Apply collision theory to explain the effect 	 Collins Connect Quizzes with mid topic feedback. The rate and extent of chemical change topic test linked with ARE. Required practical

		 of concentration, pressure, temperature, surface area and catalysts on frequency of collisions and rate of reaction. Draw graphs and use them to draw conclusions Interpret data to draw accurate conclusions Apply knowledge of control, dependent and independent variables to design experimental work Identify anomalies and explain how they are caused. Use correct terminology when assessing validity of data Carry out practical work to generate data to support theory work. Make predictions about the position of equilibrium and yields of products when changes are made to reaction conditions. Analyse data to assess the most favourable reaction conditions. Know that crude oil is formed from ancient 	
Hydrocarbons	 Crude oil- formation and separation. Alkanes – properties, combustion and cracking. Alkenes and their reactions. Alcohols- properties and reactions. Methods of alcohol production. Carboxylic acids and esters. Addition polymers. Condensation polymers. Amino acids. Starch and cellulose. DNA. 	 Index that crude on is formed from ancient biomass under high temperature and pressure an in the absence of oxygen. Know that crude oil is a mixture of hydrocarbons, mainly alkanes. Define hydrocarbons, homologous series, saturated. Know that the general formula of an alkane is CnH_{2n+2} where n = number of carbon atoms in the alkane. Name and draw the structures of the first four alkanes. Write molecular formula and draw displayed formula of organic molecules. Describe how crude oil is separated into fractions by fractional distillation. 	 Collins Connect Quizzes with mid- topic feedback Hydrocarbons topic test linked with ARE.

 Make links between molecular size of alkanes, and boiling point, viscosity and flammability. Describe the process of cracking and balance cracking equations. Evaluate the usefulness of cracking to satisfy demands for low molecular weight alkanes as fuels. Describe the products of complete and incomplete combustion of hydrocarbons. Write balanced equations for complete and incomplete combustion. Describe the test for the production of carbon dioxide and for the presence of water. Define unsaturated. Know the names, formula and structures of first four alkenes. 	
 first four alkenes. Describe the chemical test for the presence of an alkene and the positive result of the test. Use knowledge of addition reactions to predict products for reactions of alkene compounds Draw displayed formulae and structural formulae of first four alcohols and carboxylic acids and ethyl ethanoate. Describe the properties and reactions of alcohols. Describe the formation of alcohols through fermentation. Describe the formation of carboxylic acids through oxidation of alcohols. Describe the production of an ester by a condensation reaction between a carboxylic acid and an alcohol. Describe the process of addition and condensation polymerization. 	

Chemical Analysis	 Pure and impure substances. Mixtures. Formulations Chromatography. Tests for gases. Flame tests to identify cations. Precipitates of metal hydroxides to identify cations. Testing for anions. Instrumental methods. Flame emission spectroscopy. 	 monomer in terms of a sugar, phosphate group and a base. Name the four bases in DNA Define pure, impure and mixture Physical properties of pure and impure substances – melting and boiling points. Define formulation Identify role of components in a formulation Describe how chromatography can be used to separate components in a liquid mixture. Define mobile phase and stationary phase as used in chromatography. Analyse chromatograms to asses purity and identify number of components in a mixture. Calculate the Rf value of a component in a chromatogram. Identify the identity of components in a chromatogram by comparing with Rf values of reference substances. 	 Collins Connect Quizzes with mid- topic feedback Chemical Analysis topic test linked with ARE. Required practical
		 Writing equations to represent addition and condensation polymerization. Asses the differences between condensation and addition reactions. Describe the structure of an amino acid in terms of the functional groups present. Describe that amino acids undergo condensation polymerization to produce polypeptides and then proteins. Describe how starch and cellulose are both polysaccharides made from condensation reaction of glucose. Describe the structure of DNA as two polynucleotide chains twisted to form a double helix. Describe the structure of a nucleotide 	

The atmosphere	 Proportions of gases in the atmosphere. The Earth's early atmosphere. How oxygen levels increased and carbon dioxide levels decreased. Greenhouse gases and global climate 	 Write balanced equations for the tests for anions. Write balanced equations of precipitation reactions Describe the advantages of instrumental techniques. Interpretation of gas-liquid chromatograms. Describe flame emission spectroscopy. Analyse spectra from flame spectroscopy Explain the advantages of flame emission spectroscopy over flame tests. Describe the percentages of gases in the atmosphere today. Describe ideas about Earth's early atmosphere. Interpret evidence about Earth's early atmosphere. Evaluate different theories about the Earth's early atmosphere. 	 Collins Connect Quizzes with mid- topic feedback. The atmosphere topic test linked with ARE
		 hydrogen, oxygen, carbon dioxide and chlorine. Describe how flame tests can be used to identify cations. Explain why flame tests cannot be used to identify different metal ions in a mixture. Describe how precipitation of metal hydroxides can be used to identify cations. Write balanced equations of precipitation reactions. Describe the test and positive result for carbonate, sulfate, chloride, bromide and iodide ions. Write balanced equations for the tests for 	

		 Name the three main greenhouse gases. Explain how human activities increase the levels of greenhouse gases in the atmosphere and lead to climate change and global warming. Describe the effects of climate change. Analyse data to draw relevant conclusions (evaluating quality of evidence). Explore the importance of peer review and communicating results. Define carbon footprint . Describe how a personal carbon footprint can be reduced. Describe how governments can reduce carbon footprints. Describe and evaluate limitations on carbon footprint reduction. Describe the origin and the effects of carbon monoxide, oxides of sulfur and nitrogen and particulates. 	
Sustainable development	 Using Earths resources and sustainable development. Potable water. Waste water treatment. Alternative methods of metal extraction. Life Cycle Assessments. Reduce, reuse and recycle. Corrosion and it's prevention. Alloys as useful material. Ceramics, polymers and composites. The Haber Process. NPK fertilisers. 	 Define renewable, finite, non-renewable in terms of resources. Order of magnitude calculations. Explain how properties are linked to use of a material. Compare products based on lifecycle assessment using given data. Compare the ease of obtaining potable water (by type of water available) in different geographical regions. Describe the steps in waste water management. Describe the process of phytomining and bioleaching. Compare products based on lifecycle assessment using data given. 	 Collins Connect Quizzes with mid- topic feedback Sustainable development topic test linked with ARE. Required practical

 Describe conditions required for rusting
and methods of prevention of rusting.
Describe what is an alloy and name
different alloys.
Compare properties of alloys and pure
metals.
Explain how properties are linked to use of
a material.
• Describe what is meant by a ceramic,
polymer and composite, and their
properties.
Make predictions about the position of
equilibrium when changes are made to
conditions
Analyse data to assess the most favourable
reaction conditions.
Explain the compromise conditions used in
the Haber process to get best yield / rate
balance.
 Identify elements needed for healthy plant
growth.
Describe how NPK fertilisers are prepared.